Part Number Hot Search : 
74F648SC LEUWE3B P813ID T711058 ALN1945 LS3250 EL6290CJ BCM7318
Product Description
Full Text Search
 

To Download MAX19996A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-4402; Rev 1; 5/09
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
General Description
The MAX19996A single, high-linearity downconversion mixer provides 8.7dB conversion gain, +24.5dBm IIP3, and 9.8dB noise figure for 2000MHz to 3900MHz WCS, LTE, WiMAXTM, and MMDS wireless infrastructure applications. With an ultra-wide LO frequency range of 2100MHz to 4000MHz, the MAX19996A can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. For a 2.5GHz variant tuned specifically for low-side injection, refer to the MAX19996 data sheet. In addition to offering excellent linearity and noise performance, the MAX19996A also yields a high level of component integration. This device includes a double-balanced passive mixer core, an IF amplifier, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX19996A requires a nominal LO drive of 0dBm, and supply current is typically 230mA at VCC = 5.0V, or 150mA at VCC = 3.3V. The MAX19996A is pin compatible with the MAX19996 2000MHz to 3000MHz mixer. The device is also pin similar with the MAX9984/MAX9986/MAX9986A 400MHz to 1000MHz mixers and the MAX9993/ MAX9994/MAX9996 1700MHz to 2200MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. The MAX19996A is available in a compact 5mm x 5mm, 20-pin thin QFN with an exposed pad. Electrical performance is guaranteed over the extended -40C to +85C temperature range.
Features
o 2000MHz to 3900MHz RF Frequency Range o 2100MHz to 4000MHz LO Frequency Range o 50MHz to 500MHz IF Frequency Range o 8.7dB Conversion Gain o 9.8dB Noise Figure o +24.5dBm Typical Input IP3 o 11dBm Typical Input 1dB Compression Point o 67dBc Typical 2LO-2RF Spurious Rejection at PRF = -10dBm o Integrated LO Buffer o Integrated RF and LO Baluns for Single-Ended Inputs o Low -3dBm to +3dBm LO Drive o Pin Compatible with the MAX19996 2000MHz to 3000MHz Mixer o Pin Similar with the MAX9993/MAX9994/MAX9996 Series of 1700MHz to 2200MHz Mixers and the MAX9984/MAX9986/MAX9986A Series of 400MHz to 1000MHz Mixers o Single 5.0V or 3.3V Supply o External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ReducedPerformance Mode
MAX19996A
Applications
2.3GHz WCS Base Stations 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations 3.5GHz WiMAX and LTE Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems
PART MAX19996AETP+ MAX19996AETP+T
Ordering Information
TEMP RANGE -40C to +85C -40C to +85C PIN-PACKAGE 20 Thin QFN-EP* 20 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.
T = Tape and reel.
WiMAX is a trademark of WiMAX Forum.
Pin Configuration/Functional Diagram appears at end of data sheet.
1
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
ABSOLUTE MAXIMUM RATINGS
VCC to GND ...........................................................-0.3V to +5.5V IF+, IF-, LO to GND ....................................-0.3V to (VCC + 0.3V) RF, LO Input Power ........................................................+12dBm RF, LO Current (RF and LO is DC shorted to GND through a balun)...............................................................50mA Continuous Power Dissipation (Note 1) ...............................5.0W JA (Notes 2, 3)..............................................................+38C/W JC (Notes 1, 3)................................................................13C/W Operating Case Temperature Range (Note 4).........................................TC = -40C to +85C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C
Note 1: Based on junction temperature TJ = TC + (JC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150C. Note 2: Junction temperature TJ = TA + (JA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150C. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 4.75V to 5.25V, no input AC signals. TC = -40C to +85C, unless otherwise noted. Typical values are at VCC = 5.0V, TC = +25C, all parameters are production tested.)
PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC CONDITIONS MIN 4.75 TYP 5.0 230 MAX 5.25 245 UNITS V mA
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 3.0V to 3.6V, no input AC signals. TC = -40C to +85C, unless otherwise noted. Typical values are at VCC = 3.3V, TC = +25C, parameters are guaranteed by design and not production tested, unless otherwise noted.)
PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC Total supply current, VCC = 3.3V CONDITIONS MIN 3.0 TYP 3.3 150 MAX 3.6 UNITS V mA
2
_______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER RF Frequency Range SYMBOL CONDITIONS Typical Application Circuit with C1 = 8.2pF, see Table 1 for details (Note 5) fRF Typical Application Circuit with C1 = 1.5pF, see Table 1 for details (Note 5) (Note 5) Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5) Using Mini-Circuits TC4-1W-7A 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5) MIN 2000 3000 2100 TYP MAX 3000 MHz 3900 4000 MHz UNITS
LO Frequency
fLO
100
500
IF Frequency
fIF
MHz
50
250
LO Drive
PLO
-3
0
+3
dBm
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40C to +85C. Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
PARAMETER Small-Signal Conversion Gain SYMBOL CONDITIONS fRF = 2300MHz to 2900MHz, TC = +25C (Note 7) fRF = 2305MHz to 2360MHz fRF = 2500MHz to 2570MHz Gain Variation vs. Frequency GC fRF = 2570MHz to 2620MHz fRF = 2500MHz to 2690MHz fRF = 2700MHz to 2900MHz Conversion Gain Temperature Coefficient Single Sideband Noise Figure Noise Figure Temperature Coefficient TCCG TC = -40C to +85C No blockers present NFSSB fRF = 2600MHz, fIF = 300MHz, PLO = 0dBm, VCC = +5.0V, TC = +25C, no blockers present fRF = 2300MHz to 2900MHz, single sideband, no blockers present, TC = -40C to +85C +8dBm blocker tone applied to RF port, fRF = 2600MHz, fLO = 2900MHz, fBLOCKER = 2400MHz, PLO = 0dBm, VCC = +5.0V, TC = +25C (Note 8) MIN 7.9 TYP 8.7 0.1 0.1 0.1 0.2 0.3 -0.012 9.8 9.8 0.018 12 10.5 dB dB/C dB MAX 9.2 UNITS dB
TCNF
dB/C
Noise Figure Under Blocking
NFB
18
22
dB
_______________________________________________________________________________________
3
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40C to +85C. Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
PARAMETER Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC 2LO-2RF Spur Rejection 3LO-3RF Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance 2x2 3x3 RLRF RLLO ZIF SYMBOL IP1dB IIP3 CONDITIONS TC = +25C (Note 9) fRF = 2600MHz TC = +25C (Notes 7, 9) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm, TC = +25C (Note 7) fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm, TC = -40C to +85C fSPUR = fLO - 150MHz fSPUR = fLO - 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm 60 55 75 65 MIN 9.5 10 22.5 TYP 11 11 24.5 0.3 67 62 85 75 17.5 19.5 200 MAX UNITS dBm dBm dB dBc dBc dB dB
LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values PLO = +3dBm (Note 7) PLO = +3dBm PLO = +3dBm PLO = +3dBm (Note 7) fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH fIF = 300MHz, L1 = L2 = 390nH 27
25
IF Output Return Loss
RLIF
25
dB
25 30 -28.6 -29.7 -28.4 -22.8 dB dBm dBm dBm
RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port
4
_______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50 sources. Typical values are for TC = +25C, VCC = 3.3V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.) (Note 6)
PARAMETER Small-Signal Conversion Gain Gain Variation vs. Frequency Conversion Gain Temperature Coefficient Single Sideband Noise Figure Noise Figure Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point SYMBOL GC GC TCCG NFSSB TCNF IP1dB IIP3 fRF = 2300MHz to 2900MHz, any 100MHz band TC = -40C to +85C No blockers present Single sideband, no blockers present, TC = -40C to +85C (Note 9) fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = -5dBm fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = -5dBm, TC = -40C to +85C 2x2 3x3 RLRF RLLO ZIF fSPUR = fLO - 150MHz fSPUR = fLO - 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm CONDITIONS MIN TYP 8.3 0.15 -0.012 9.6 0.018 7.75 19.7 MAX UNITS dB dB dB/C dB dB/C dBm dBm
MAX19996A
IIP3 Variation with TC
0.5 64 59 74 64 17.5 19.5 200
dB
2LO-2RF Spur Rejection 3LO-3RF Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance
dBc dBc dB dB
LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH fIF = 300MHz, L1 = L2 = 390nH
25
IF Output Return Loss
RLIF
25
dB
25 38 -30 -31 -34 dB dBm dBm dBm
RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port
fRF = 2300MHz to 2900MHz, PLO = +3dBm fLO = 2600MHz to 3200MHz, PLO = +3dBm fLO = 2600MHz to 3200MHz, PLO = +3dBm fLO = 2600MHz to 3200MHz, PLO = +3dBm
_______________________________________________________________________________________
5
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 2300MHz TO 2900MHz, LOW-SIDE LO INJECTION
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources. PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40C to +85C. Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, all parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
PARAMETER Small-Signal Conversion Gain Gain Variation vs. Frequency Conversion Gain Temperature Coefficient SYMBOL GC GC TCCG CONDITIONS fRF = 2300MHz to 2900MHz, TC = +25C (Note 7) fRF = 2300MHz to 2900MHz, any 100MHz band TC = -40C to +85C No blockers present Single Sideband Noise Figure NFSSB fRF = 2600MHz, fIF = 300MHz, PLO = 0dBm, VCC = +5.0V, TC = +25C, no blockers present Single sideband, no blockers present, TC = -40C to +85C TC = +25C (Note 9) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm, TC = +25C (Note 7) fRF = 2300MHz to 2900MHz, PRF1 = PRF2 = -5dBm, TC = -40C to +85C 2x2 3x3 RLRF RLLO ZIF fSPUR = fLO + 150MHz fSPUR = fLO + 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm 63 58 79 69 9.5 22 MIN 8.2 TYP 8.9 0.1 -0.012 9.5 9.5 12.5 10.5 dB MAX 9.5 UNITS dB dB dB/C
Noise Figure Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC 2RF-2LO Spur Rejection 3RF-3LO Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance
TCNF IP1dB IIP3
0.018 10.7 24.05 0.5 68 63 84 74 19 18 200
dB/C dBm dBm dB dBc dBc dB dB
LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH fIF = 300MHz, L1 = L2 = 390nH 29
25
IF Output Return Loss
RLIF
25
dB
25 36 -28 -29 -24 -20 -19 dB dBm dBm dBm
RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port
fRF = 2600MHz, PLO = +3dBm fLO = 1800MHz to 2900MHz, PLO = +3dBm fLO = 1800MHz to 2900MHz, PLO = +3dBm fLO = 1800MHz to 2900MHz, PLO = +3dBm
6
_______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz TO 3900MHz, LOW-SIDE LO INJECTION
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40C to +85C. Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
PARAMETER Small-Signal Conversion Gain SYMBOL GC CONDITIONS TC = +25C (Note 7) fRF = 3450MHz to 3750MHz, any 100MHz band fRF = 3450MHz to 3750MHz, any 200MHz band TC = -40C to +85C No blockers present Single Sideband Noise Figure Noise Figure Temperature Coefficient NFSSB fRF = 3500MHz, fIF = 300MHz, PLO = 0dBm, VCC = +5.0V, TC = +25C, no blockers present fRF = 3100MHz to 3900MHz, single sideband, no blockers present, TC = -40C to +85C +8dBm blocker tone applied to RF port, fRF = 3500MHz, fLO = 3200MHz, fBLOCKER = 3750MHz, PLO = 0dBm, VCC = +5.0V, TC = +25C (Note 8) fRF = 3500MHz (Note 9) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm (Note 7) fRF = 3100MHz to 3900MHz, fIF = 300MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm, TC = -40C to +85C 2x2 3x3 RLRF RLLO ZIF fSPUR = fLO + 150MHz fSPUR = fLO + 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm 60 55 78 68 10 23 MIN 7.5 TYP 8.0 0.15 dB 0.3 -0.012 10.5 10.5 0.018 13.5 11.6 dB dB/C MAX 8.5 UNITS dB
MAX19996A
Gain Variation vs. Frequency
GC
Conversion Gain Temperature Coefficient
TCCG
TCNF
dB/C
Noise Figure Under Blocking
NFB
18.7
21
dB
Input 1dB Compression Point Third-Order Input Intercept Point
IP1dB IIP3
12 25
dBm dBm
IIP3 Variation with TC
0.3 69 64 86 76 20 16.5 200
dB
2RF-2LO Spur Rejection 3RF-3LO Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance
dBc dBc dB dB
LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs
_______________________________________________________________________________________
7
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz TO 3900MHz, LOW-SIDE LO INJECTION (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40C to +85C. Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
PARAMETER SYMBOL CONDITIONS RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH fIF = 300MHz, L1 = L2 = 390nH 23 MIN TYP 25 MAX UNITS
IF Output Return Loss
RLIF
25
dB
25 27 -31 -27 -29.5 -20 -20 dB dBm dBm dBm
RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port
fRF = 2600MHz PLO = +3dBm (Note 7) fLO = 2800MHz to 3600MHz PLO = +3dBm PLO = +3dBm PLO = +3dBm (Note 7)
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz TO 3900MHz, HIGH-SIDE LO INJECTION
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources, Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz. Parameters are guaranteed by design and not production tested.) (Note 6)
PARAMETER Small-Signal Conversion Gain SYMBOL GC fRF = 3450MHz to 3750MHz, any 100MHz band fRF = 3450MHz to 3750MHz, any 200MHz band TC = -40C to +85C No blockers present Single sideband, no blockers present, TC = -40C to +85C (Note 9) fRF1 = 3500MHz, fRF2 = 3501MHz, PRF1 = PRF2 = -5dBm fRF1 = 3500MHz, fRF2 = 3501MHz, PRF1 = PRF2 = -5dBm, TC = -40C to +85C 2x2 fSPUR = fLO - 150MHz PRF = -10dBm PRF = -5dBm CONDITIONS MIN TYP 7.6 0.15 dB 0.3 -0.012 10.9 0.018 12.4 24.7 0.5 69 64 dB/C dB dB/C dBm dBm dB dBc MAX UNITS dB
Gain Variation vs. Frequency
GC
Conversion Gain Temperature Coefficient Single Sideband Noise Figure Noise Figure Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC 2LO-2RF Spur Rejection
TCCG NFSSB TCNF IP1dB IIP3
8
_______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz TO 3900MHz, HIGH-SIDE LO INJECTION (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50 sources, Typical values are for TC = +25C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz. Parameters are guaranteed by design and not production tested.) (Note 6)
PARAMETER 3LO-3RF Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance SYMBOL 3x3 RLRF RLLO ZIF CONDITIONS fSPUR = fLO - 100MHz PRF = -10dBm PRF = -5dBm MIN TYP 90 80 22 16.3 200 MAX UNITS dBc dB dB
MAX19996A
LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50, LO driven by 50 source, IF transformed to 50 using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH fIF = 300MHz, L1 = L2 = 390nH
25
IF Output Return Loss
RLIF
25
dB
25 26.6 -38 -13.5 -27 dB dBm dBm dBm
RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port
fRF = 3100MHz to 3700MHz, PLO = +3dBm fLO = 3400MHz to 4000MHz, PLO = +3dBm fLO = 3400MHz to 4000MHz, PLO = +3dBm fLO = 3400MHz to 4000MHz, PLO = +3dBm
Note 5: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 6: All limits reflect losses of external components, including a 0.8dB loss at fIF = 300MHz due to the 4:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit. Note 7: 100% production tested for functional performance. Note 8: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers. Note 9: Maximum reliable continuous input power applied to the RF port of this device is +12dBm from a 50 source.
_______________________________________________________________________________________
9
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc01
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc02
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc03
11 TC = -30C 10 CONVERSION GAIN (dB) TC = +25C
11
11
10 CONVERSION GAIN (dB)
10 CONVERSION GAIN (dB)
9
9
9
8
8 PLO = -3dBm, 0dBm, +3dBm 7
8 VCC = 4.75V, 5.0V, 5.25V 7
7
TC = +85C
6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc04
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc05
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE 25 INPUT IP3 (dBm)
MAX19996A toc06 MAX19996A toc09
26 TC = +85C 25 INPUT IP3 (dBm) PRF = -5dBm/TONE
26 PRF = -5dBm/TONE 25 INPUT IP3 (dBm)
26
24 TC = +25C 23 TC = -30C
24 PLO = -3dBm, 0dBm, +3dBm 23
24 VCC = 4.75V, 5.0V, 5.25V 23
22 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
22 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
22 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX19996A toc07
NOISE FIGURE vs. RF FREQUENCY
MAX19996A toc08
NOISE FIGURE vs. RF FREQUENCY
12
12 TC = +85C 11 NOISE FIGURE (dB)
12
11 NOISE FIGURE (dB)
11 NOISE FIGURE (dB)
10
10
10
9 TC = +25C TC = -30C 7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
9 PLO = -3dBm, 0dBm, +3dBm
9 VCC = 4.75V, 5.0V, 5.25V
8
8
8
7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
10
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
MAX19996A
2LO-2RF RESPONSE vs. RF FREQUENCY
MAX19996A toc10
2LO-2RF RESPONSE vs. RF FREQUENCY
MAX19996A toc11
2LO-2RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm 2LO-2RF RESPONSE (dBc) 80
MAX19996A toc12
90 PRF = -5dBm 2LO-2RF RESPONSE (dBc) 80
90 PRF = -5dBm 2LO-2RF RESPONSE (dBc) 80 PLO = +3dBm PLO = 0dBm 70
90
70
70
60 TC = -30C, +25C, +85C 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
60 PLO = -3dBm 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
60 VCC = 4.75V, 5.0V, 5.25V 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
MAX19996A toc13
3LO-3RF RESPONSE vs. RF FREQUENCY
MAX19996A toc14
3LO-3RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm 3LO-3RF RESPONSE (dBc) 80
MAX19996A toc15
85 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 80
85 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 80
85
75
75
75
70
TC = -30C, +25C, +85C
70
PLO = -3dBm, 0dBm, +3dBm
70
VCC = 4.75V, 5.0V, 5.25V
65 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
65 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
65 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
MAX19996A toc16
INPUT P1dB vs. RF FREQUENCY
MAX19996A toc17
INPUT P1dB vs. RF FREQUENCY
MAX19996A toc18
13 TC = +85C 12 INPUT P1dB (dBm)
13
13
12 INPUT P1dB (dBm)
12 INPUT P1dB (dBm)
11
11
11
10 TC = -30C 9 2000 2200 2400
TC = +25C
10
PLO = -3dBm, 0dBm, +3dBm
10 VCC = 4.75V, 5.0V, 5.25V 9
9 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz)
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
______________________________________________________________________________________
11
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc19
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc20
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc21
-10
-10
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
-20
TC = +85C
-20
PLO = -3dBm, 0dBm, +3dBm
-20
VCC = 4.75V, 5.0V, 5.25V
-30
-30
-30
TC = +25C -40 2300 2500 2700
TC = -30C -40 2900 3100 3300 2300 2500 2700 2900 3100 3300 -40 2300 2500 2700 2900 3100 3300 LO FREQUENCY (MHz) LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc22
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc23
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc24
60
60
60 VCC = 5.0V, 5.25V 50
RF-TO-IF ISOLATION (dBm)
RF-TO-IF ISOLATION (dBm)
50
TC = +25C
50
40
40
RF-TO-IF ISOLATION (dBm)
40
30 TC = +85C 20 2000 2200
TC = -30C
30 PLO = -3dBm, 0dBm, +3dBm 20
30 VCC = 4.75V 20
2400
2600
2800
3000
2000
2200
2400
2600
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc25
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc26
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc27
-10 LO LEAKAGE AT RF PORT (dBm) -15 -20 -25 -30 -35 -40 2300 2520 2740 2960 3180 TC = -30C TC = +25C, +85C
-10 LO LEAKAGE AT RF PORT (dBm) -15 PLO = -3dBm, 0dBm, +3dBm -20 -25 -30 -35 -40
-10 LO LEAKAGE AT RF PORT (dBm) -15 VCC = 5.25V -20 -25 -30 -35 -40 VCC = 4.75V, 5.0V
3400
2300
2520
2740
2960
3180
3400
2300
2520
2740
2960
3180
3400
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
12
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc28
MAX19996A
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc29
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc30
-10 2LO LEAKAGE AT RF PORT (dBm) TC = -30C -20
-10 2LO LEAKAGE AT RF PORT (dBm) PLO = -3dBm, 0dBm, +3dBm -20
-10 2LO LEAKAGE AT RF PORT (dBm)
-20
VCC = 4.75V
-30 TC = +25C -40 TC = +85C
-30
-30 VCC = 5.0V -40 VCC = 5.25V
-40
-50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz)
-50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz)
-50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX19996A toc31
IF PORT RETURN LOSS vs. IF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V fLO = 2900MHz IF PORT RETURN LOSS (dB) 10 L1, L2 = 270nH
MAX19996A toc32
LO PORT RETURN LOSS vs. LO FREQUENCY
PLO = +3dBm LO PORT RETURN LOSS (dB) 10
MAX19996A toc33
0
0
0
RF PORT RETURN LOSS (dB)
10
20
20
20
30
L1, L2 = 390nH
30
PLO = -3dBm, 0dBm, +3dBm
40 L1, L2 = 470nH L1, L2 = 120nH
30 PLO = -3dBm 40
PLO = 0dBm
40 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
50 50 140 230 320 410 500 IF FREQUENCY (MHz)
1800
2350
2900
3450
4000
LO FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
MAX19996A toc34
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc35
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc36
250 VCC = 5.25V 240 SUPPLY CURRENT (mA) VCC = 5.0V
-10 L3 = 0 LO LEAKAGE AT IF PORT (dBm) -20
50 L3 = 4.7nH RF-TO-IF ISOLATION (dB) 40
230
-30
220 VCC = 4.75V
-40
L3 = 4.7nH
30 L3 = 0
210
200 -35 -5 25 TEMPERATURE (C) 55 85
-50 2300 2500 2700 2900 3100 3300 LO FREQUENCY (MHz)
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
______________________________________________________________________________________
13
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc37
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc38
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc39
11 VCC = 3.3V TC = -30C 10 CONVERSION GAIN (dB) TC = +25C
11 VCC = 3.3V 10 CONVERSION GAIN (dB)
11
10 CONVERSION GAIN (dB)
9
9
9
8
8
8
7 TC = +85C 6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
7
PLO = -3dBm, 0dBm, +3dBm
7
VCC = 3.0V, 3.3V, 3.6V
6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc40
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc41
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
MAX19996A toc42 MAX19996A toc45
21 TC = +85C INPUT IP3 (dBm) 20 PRF = -5dBm/TONE VCC = 3.3V
21 PRF = -5dBm/TONE VCC = 3.3V 20
21
INPUT IP3 (dBm)
INPUT IP3 (dBm) PLO = -3dBm, 0dBm, +3dBm
20
19
TC = -30C, +25C
19
19
VCC = 3.0V, 3.3V, 3.6V
18 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
18 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
18 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX19996A toc43
NOISE FIGURE vs. RF FREQUENCY
VCC = 3.3V 11 NOISE FIGURE (dB)
MAX19996A toc44
NOISE FIGURE vs. RF FREQUENCY
12
12 TC = +85C 11 NOISE FIGURE (dB) VCC = 3.3V
12
11 NOISE FIGURE (dB)
10
10
10
9
9 PLO = -3dBm, 0dBm, +3dBm
9 VCC = 3.0V, 3.3V, 3.6V
8 TC = -30C 7 2000 2200 2400
TC = +25C
8
8
7 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz)
7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
14
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
2LO-2RF RESPONSE vs. RF FREQUENCY
MAX19996A toc46
MAX19996A
2LO-2RF RESPONSE vs. RF FREQUENCY
MAX19996A toc47
2LO-2RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm 2LO-2RF RESPONSE (dBc)
MAX19996A toc48
80 PRF = -5dBm VCC = 3.3V 2LO-2RF RESPONSE (dBc) 70
80 PRF = -5dBm VCC = 3.3V 2LO-2RF RESPONSE (dBc) PLO = +3dBm 70 PLO = 0dBm
80
70
60
60
60
TC = -30C, +25C, +85C 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) 50 2000 2200 2400
PLO = -3dBm 50 2600 2800 3000 2000 2200
VCC = 3.0V, 3.3V, 3.6V 2400 2600 2800 3000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
MAX19996A toc49
3LO-3RF RESPONSE vs. RF FREQUENCY
MAX19996A toc50
3LO-3RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm 3LO-3RF RESPONSE (dBc)
MAX19996A toc51
80 PRF = -5dBm VCC = 3.3V 3LO-3RF RESPONSE (dBc) 70
80 PRF = -5dBm VCC = 3.3V 3LO-3RF RESPONSE (dBc) 70
80
70
60 TC = -30C, +25C, +85C 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
60 PLO = -3dBm, 0dBm, +3dBm 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
60 VCC = 3.0V, 3.3V, 3.6V 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
MAX19996A toc52
INPUT P1dB vs. RF FREQUENCY
VCC = 3.3V 9 INPUT P1dB (dBm)
MAX19996A toc53
INPUT P1dB vs. RF FREQUENCY
MAX19996A toc54
10 VCC = 3.3V 9 INPUT P1dB (dBm) TC = +85C
10
10
9 INPUT P1dB (dBm)
VCC = 3.6V
8
8
8
7 TC = +25C 6 TC = -30C
7 PLO = -3dBm, 0dBm, +3dBm
7 VCC = 3.3V
6
6
VCC = 3.0V
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
______________________________________________________________________________________
15
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc55
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc56
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
VCC = 3.0V, 3.3V, 3.6V LO LEAKAGE AT IF PORT (dBm)
MAX19996A toc57
-20 TC = +85C -30
-20
VCC = 3.3V
VCC = 3.3V
-20
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
-30
-30
-40 TC = +25C TC = -30C
-40
PLO = -3dBm, 0dBm, +3dBm
-40
-50 2300 2500 2700 2900 3100 3300 LO FREQUENCY (MHz)
-50 2300 2500 2700 2900 3100 3300 LO FREQUENCY (MHz)
-50 2300 2500 2700 2900 3100 3300 LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc58
RF-TO-IF ISOLATION vs. RF FREQUENCY
VCC = 3.3V RF-TO-IF ISOLATION (dB) 50 PLO = -3dBm, 0dBm, +3dBm
MAX19996A toc59
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc60
60 VCC = 3.3V RF-TO-IF ISOLATION (dB) 50 TC = -30C, +25C, +85C
60
60
RF-TO-IF ISOLATION (dB)
50
VCC = 3.0V, 3.3V, 3.6V
40
40
40
30
30
30
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc61
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc62
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc63
-20 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm)
-20 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm)
-20 LO LEAKAGE AT RF PORT (dBm)
-30
-30
-30
-40
TC = -30C, +25C, +85C
PLO = -3dBm, 0dBm, +3dBm -40
VCC = 3.0V, 3.3V, 3.6V -40
-50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz)
-50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz)
-50 2300 2520 2740 2960 3180 3400 LO FREQUENCY (MHz)
16
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc64
MAX19996A
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc65
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc66
-10 VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) -20 TC = -30C -30
-10 VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) -20
-10 2LO LEAKAGE AT RF PORT (dBm)
-20
VCC = 3.0V
VCC = 3.3V
-30
-30
-40 TC = +85C -50 2300 2520 2740 2960
TC = +25C
-40 PLO = -3dBm, 0dBm, +3dBm -50
-40 VCC = 3.6V -50
3180
3400
2300
2520
2740
2960
3180
3400
2300
2520
2740
2960
3180
3400
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX19996A toc67
IF PORT RETURN LOSS vs. IF FREQUENCY
MAX19996A toc68
LO PORT RETURN LOSS vs. LO FREQUENCY
PLO = +3dBm LO PORT RETURN LOSS (dB) 10 VCC = 3.3V PLO = 0dBm
MAX19996A toc69
0 VCC = 3.3V RF PORT RETURN LOSS (dB) 5 10 15 20 25 30 2000 2200 2400 2600 2800 PLO = -3dBm, 0dBm, +3dBm
0 fLO = 2900MHz IF PORT RETURN LOSS (dB) 10 VCC = 3.0V, 3.3V, 3.6V
0
20
20
30
40
30
PLO = -3dBm
50 3000 50 140 230 320 410 500 RF FREQUENCY (MHz) IF FREQUENCY (MHz)
40 1800 2350 2900 3450 4000 LO FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
MAX19996A toc70
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) L3 = 0 -20
MAX19996A toc71
RF-TO-IF ISOLATION vs. RF FREQUENCY
VCC = 3.3V L3 = 4.7nH RF-TO-IF ISOLATION (dB)
MAX19996A toc72
170 VCC = 3.6V SUPPLY CURRENT (mA) 160 VCC = 3.3V
-10
50
40
150
-30
30 L3 = 0
140 VCC = 3.0V 130 -35 -5 25 TEMPERATURE (C) 55 85
-40 L3 = 4.7nH -50 2300 2500 2700 2900 3100 3300 LO FREQUENCY (MHz)
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
______________________________________________________________________________________
17
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc73
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc74
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc75
11 TC = -30C 10 CONVERSION GAIN (dB) TC = +25C
11
11
10 CONVERSION GAIN (dB)
10 CONVERSION GAIN (dB)
9
9
9
8
8 PLO = -3dBm, 0dBm, +3dBm 7
8 VCC = 4.75V, 5.0V, 5.25V 7
7
TC = +85C
6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
6 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc76
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc77
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE 25 INPUT IP3 (dBm)
MAX19996A toc78 MAX19996A toc81
26 PRF = -5dBm/TONE 25 INPUT IP3 (dBm) TC = +85C
26 PRF = -5dBm/TONE 25 INPUT IP3 (dBm)
26
24
24
24
23 TC = +25C 22 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) TC = -30C
23
PLO = -3dBm, 0dBm, +3dBm
23
VCC = 4.75V, 5.0V, 5.25V
22 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
22 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX19996A toc79
NOISE FIGURE vs. RF FREQUENCY
MAX19996A toc80
NOISE FIGURE vs. RF FREQUENCY
12
12 TC = +85C 11 NOISE FIGURE (dB)
12
11 NOISE FIGURE (dB)
11 NOISE FIGURE (dB)
10
10
10
9
9 PLO = -3dBm, 0dBm, +3dBm
9 VCC = 4.75V, 5.0V, 5.25V
8 TC = -30C 7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) TC = +25C
8
8
7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
7 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
18
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
2RF-2LO RESPONSE vs. RF FREQUENCY
MAX19996A toc82
MAX19996A
2RF-2LO RESPONSE vs. RF FREQUENCY
MAX19996A toc83
2RF-2LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm 2RF-2LO RESPONSE (dBc) 80
MAX19996A toc84
90 PRF = -5dBm 2RF-2LO RESPONSE (dBc) 80
90 PRF = -5dBm 2RF-2LO RESPONSE (dBc) 80 PLO = +3dBm 70 PLO = 0dBm
90
70
70
60 TC = -30C, +25C, +85C 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
60 PLO = -3dBm 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
60 VCC = 4.75V, 5.0V, 5.25V 50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
3RF-3LO RESPONSE vs. RF FREQUENCY
MAX19996A toc85
3RF-3LO RESPONSE vs. RF FREQUENCY
MAX19996A toc86
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm 3RF-3LO RESPONSE (dBc) 80
MAX19996A toc87
85 PRF = -5dBm 3RF-3LO RESPONSE (dBc) 80
85 PRF = -5dBm 3RF-3LO RESPONSE (dBc) 80
85
75
75
75
70 TC = -30C, +25C, +85C 65 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
70 PLO = -3dBm, 0dBm, +3dBm 65 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
70
VCC = 4.75V, 5.0V, 5.25V
65 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
MAX19996A toc88
INPUT P1dB vs. RF FREQUENCY
MAX19996A toc89
INPUT P1dB vs. RF FREQUENCY
MAX19996A toc90
13
13
13
12 INPUT P1dB (dBm)
TC = +85C INPUT P1dB (dBm)
12
12 INPUT P1dB (dBm) VCC = 5.25V 11
11
11
10 TC = +25C 9 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) TC = -30C
10 PLO = -3dBm, 0dBm, +3dBm 9 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
10 VCC = 5.0V 9 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) VCC = 4.75V
______________________________________________________________________________________
19
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc91
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc92
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc93
-10
-10
-10
LO LEAKAGE AT IF PORT (dBm)
TC = -30C -20
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
PLO = -3dBm, 0dBm, +3dBm -20
VCC = 4.75V, 5.0V, 5.25V -20
-30 TC = +25C TC = +85C -40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz)
-30
-30
-40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz)
-40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc94
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc95
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc96
60
60
60
RF-TO-IF ISOLATION (dB)
50 TC = +25C, +85C 40 TC = -30C 30
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
50
PLO = -3dBm, 0dBm, +3dBm
50
VCC = 4.75V, 5.0V, 5.25V
40
40
30
30
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc97
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc98
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc99
-10 LO LEAKAGE AT RF PORT (dBm) -15 -20 -25 -30 -35 -40 1800 2020 2240 2460 2680
-10 LO LEAKAGE AT RF PORT (dBm) -15 PLO = -3dBm, 0dBm, +3dBm -20 -25 -30 -35 -40
-10 LO LEAKAGE AT RF PORT (dBm) -15 -20 -25 -30 -35 -40
TC = -30C, +25C, +85C
VCC = 4.75V, 5.0V, 5.25V
2900
1800
2020
2240
2460
2680
2900
1800
2020
2240
2460
2680
2900
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
20
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc100
MAX19996A
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc101
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc102
-10 2LO LEAKAGE AT RF PORT (dBm) TC = -30C -20
-10 2LO LEAKAGE AT RF PORT (dBm) PLO = -3dBm, 0dBm, +3dBm -20
-10 2LO LEAKAGE AT RF PORT (dBm)
-20 VCC = 4.75V
-30
-30
-30
-40
TC = +85C
TC = +25C
-40
-40 VCC = 5.25V VCC = 5.0V 2460 2680 2900
-50 1800 2020 2240 2460 2680 2900 LO FREQUENCY (MHz)
-50 1800 2020 2240 2460 2680 2900 LO FREQUENCY (MHz)
-50 1800 2020 2240 LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX19996A toc103
IF PORT RETURN LOSS vs. IF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V fLO = 2300MHz IF PORT RETURN LOSS (dB) 10 L1, L2 = 270nH
MAX19996A toc104
LO PORT RETURN LOSS vs. LO FREQUENCY
MAX19996A toc105
0
0
0 PLO = +3dBm 10
10
20 30 L1, L2 = 390nH
20 PLO = -3dBm, 0dBm, +3dBm 30
LO PORT RETURN LOSS (dB)
RF PORT RETURN LOSS (dB)
20 PLO = 0dBm 30 PLO = -3dBm 40
40
L1, L2 = 470nH L1, L2 = 120nH
40 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
50 50 140 230 320 410 500 IF FREQUENCY (MHz)
1800
2350
2900
3450
4000
LO FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
MAX19996A toc106
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc107
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc108
250 VCC = 5.25V 240 SUPPLY CURRENT (mA) VCC = 5.0V
0
60
LO LEAKAGE AT IF PORT (dBm)
RF-TO-IF ISOLATION (dB)
-10
L3 = 0
50 L3 = 4.7nH 40
230
-20
220 VCC = 4.75V
-30 L3 = 4.7nH
210
30 L3 = 0
200 -35 -5 25 TEMPERATURE (C) 55 85
-40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz)
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
______________________________________________________________________________________
21
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc109
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc110
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc111
10 TC = -30C TC = +25C CONVERSION GAIN (dB) 9
10
10
CONVERSION GAIN (dB)
CONVERSION GAIN (dB)
9
9
8
8
8
7 TC = +85C 6 3000 3300 3600 3900 RF FREQUENCY (MHz)
7
PLO = -3dBm, 0dBm, +3dBm
7 VCC = 4.75V, 5.0V, 5.25V 6
6 3000 3300 3600 3900 RF FREQUENCY (MHz)
3000
3300
3600
3900
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc112
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc113
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE 26 INPUT IP3 (dBm)
MAX19996A toc114 MAX19996A toc117
27 PRF = -5dBm/TONE 26 INPUT IP3 (dBm) TC = +85C
27 PRF = -5dBm/TONE 26 INPUT IP3 (dBm)
27
25
25
25
24
TC = +25C TC = -30C
24 PLO = -3dBm, 0dBm, +3dBm 23
24 VCC = 4.75V, 5.0V, 5.25V 23 3000 3300 3600 3900 3000 3300 3600 3900 RF FREQUENCY (MHz) RF FREQUENCY (MHz)
23 3000 3300 3600 3900 RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX19996A toc115
NOISE FIGURE vs. RF FREQUENCY
MAX19996A toc116
NOISE FIGURE vs. RF FREQUENCY
13
13 TC = +85C 12 NOISE FIGURE (dB)
13
12 NOISE FIGURE (dB)
12 NOISE FIGURE (dB)
11
11
11
10
10
10
9 TC = -30C 8 3000 3300 3600 3900 RF FREQUENCY (MHz) TC = +25C
9 PLO = -3dBm, 0dBm, +3dBm 8 3000 3300 3600 3900 RF FREQUENCY (MHz)
9
VCC = 4.75V, 5.0V, 5.25V
8 3000 3300 3600 3900 RF FREQUENCY (MHz)
22
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
2RF-2LO RESPONSE vs. RF FREQUENCY
MAX19996A toc118
MAX19996A
2RF-2LO RESPONSE vs. RF FREQUENCY
MAX19996A toc119
2RF-2LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm 2RF-2LO RESPONSE (dBc)
MAX19996A toc120
80 PRF = -5dBm 2RF-2LO RESPONSE (dBc)
80 PRF = -5dBm 2RF-2LO RESPONSE (dBc) PLO = +3dBm 70 PLO = -0dBm
80
70
70
60
60
60
TC = -30C, +25C, +85C 50 3000 3300 3600 3900 RF FREQUENCY (MHz) 50 3000
PLO = -3dBm 50 3300 3600 3900 3000
VCC = 4.75V, 5.0V, 5.25V 3300 3600 3900
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
3RF-3LO RESPONSE vs. RF FREQUENCY
MAX19996A toc121
3RF-3LO RESPONSE vs. RF FREQUENCY
MAX19996A toc122
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm 3RF-3LO RESPONSE (dBc) 80
MAX19996A toc123
85 PRF = -5dBm 3RF-3LO RESPONSE (dBc) 80
85 PRF = -5dBm 3RF-3LO RESPONSE (dBc) 80
85
75
75
75
70
TC = -30C, +25C, +85C
70 PLO = -3dBm, 0dBm, +3dBm 65
70
VCC = 4.75V, 5.0V, 5.25V
65 3000 3300 3600 3900 RF FREQUENCY (MHz)
65 3000 3300 3600 3900 3000 3300 3600 3900 RF FREQUENCY (MHz) RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
MAX19996A toc124
INPUT P1dB vs. RF FREQUENCY
MAX19996A toc125
INPUT P1dB vs. RF FREQUENCY
VCC = 5.25V 13 INPUT P1dB (dBm)
MAX19996A toc126
14 TC = +85C 13 INPUT P1dB (dBm)
14
14
13 INPUT P1dB (dBm)
12
12
12
11 TC = +25C 10 TC = -30C
11 PLO = -3dBm, 0dBm, +3dBm 10
11 VCC = 4.75V 10 VCC = 5.0V
9 3000 3300 3600 3900 RF FREQUENCY (MHz)
9 3000 3300 3600 3900 RF FREQUENCY (MHz)
9 3000 3300 3600 3900 RF FREQUENCY (MHz)
______________________________________________________________________________________
23
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc127
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc128
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc129
-10
-10
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
-20 TC = +85C
-20
PLO = -3dBm, 0dBm, +3dBm
LO LEAKAGE AT IF PORT (dBm)
-20
VCC = 4.75V, 5.0V, 5.25V
-30
-30
-30
TC = -30C -40 2700 3000
TC = +25C -40 3300 3600 2700 3000 3300 3600 -40 2700 3000 3300 3600 LO FREQUENCY (MHz) LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc130
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc131
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc132
45
45
45
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
TC = -30C, +25C, +85C 35
PLO = -3dBm, 0dBm, +3dBm 35
VCC = 4.75V, 5.0V, 5.25V 35
25
25
25
15 3000 3300 3600 3900 RF FREQUENCY (MHz)
15 3000 3300 3600 3900 RF FREQUENCY (MHz)
15 3000 3300 3600 3900 RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc133
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc134
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc135
-15 LO LEAKAGE AT RF PORT (dBm) TC = -30C, +25C, +85C -25
-15 LO LEAKAGE AT RF PORT (dBm) PLO = -3dBm, 0dBm, +3dBm -25
-15 LO LEAKAGE AT RF PORT (dBm) VCC = 4.75V, 5.0V, 5.25V -25
-35
-35
-35
-45 2600 2900 3200 3500 3800 LO FREQUENCY (MHz)
-45 2600 2900 3200 3500 3800 LO FREQUENCY (MHz)
-45 2600 2900 3200 3500 3800 LO FREQUENCY (MHz)
24
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc136
MAX19996A
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm -20
MAX19996A toc137
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc138
-10 2LO LEAKAGE AT RF PORT (dBm) TC = -30C, +25C, +85C -20
-10 2LO LEAKAGE AT RF PORT (dBm)
-10 2LO LEAKAGE AT RF PORT (dBm) VCC = 4.75V, 5.0V, 5.25V -20
-30
-30
-30
-40
-40
-40
-50 2600 2900 3200 3500 3800 LO FREQUENCY (MHz)
-50 2600 2900 3200 3500 3800 LO FREQUENCY (MHz)
-50 2600 2900 3200 3500 3800 LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX19996A toc139
IF PORT RETURN LOSS vs. IF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V fLO = 3200MHz IF PORT RETURN LOSS (dB) 10 L1, L2 = 270nH
MAX19996A toc140
LO PORT RETURN LOSS vs. LO FREQUENCY
MAX19996A toc141
0 5 RF PORT RETURN LOSS (dB) 10 15 20 25 PLO = -3dBm, 0dBm, +3dBm 30 3000 3200 3400 3600 3800
0
0 PLO = +3dBm 10
20 30
LO PORT RETURN LOSS (dB)
20 PLO = 0dBm 30 PLO = -3dBm 40
L1, L2 = 390nH
40
L1, L2 = 470nH
L1, L2 = 120nH
50 4000 50 140 230 320 410 500 RF FREQUENCY (MHz) IF FREQUENCY (MHz)
1800
2350
2900
3450
4000
LO FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
VCC = 5.25V 240 SUPPLY CURRENT (mA) VCC = 5.0V
MAX19996A toc142
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc143
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc144
250
-10 L3 = 4.7nH
50
LO LEAKAGE AT IF PORT (dBm)
-20
RF-TO-IF ISOLATION (dB)
L3 = 0 40
230
-30
220 VCC = 4.75V
-40 L3 = 0
30
210
-50
L3 = 4.7nH 200 -35 -5 25 TEMPERATURE (C) 55 85 -60 2700 3000 3300 3600 LO FREQUENCY (MHz) 20 3000 3300 3600 3900 RF FREQUENCY (MHz)
______________________________________________________________________________________
25
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc145
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc146
CONVERSION GAIN vs. RF FREQUENCY
MAX19996A toc147
10 TC = -30C CONVERSION GAIN (dB) 9 TC = +25C
10
10
CONVERSION GAIN (dB)
CONVERSION GAIN (dB)
9
9
8
8
8
7 TC = +85C 6 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
7 PLO = -3dBm, 0dBm, +3dBm 6 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
7 VCC = 4.75V, 5.0V, 5.25V 6 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc148
INPUT IP3 vs. RF FREQUENCY
MAX19996A toc149
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
MAX19996A toc150 MAX19996A toc153
26 PRF = -5dBm/TONE TC = +85C
26 PRF = -5dBm/TONE
26
INPUT IP3 (dBm)
INPUT IP3 (dBm)
INPUT IP3 (dBm) PLO = -3dBm, 0dBm, +3dBm
25
25
25
24 TC = +25C
TC = -30C
24
24 VCC = 4.75V, 5.0V, 5.25V
23 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
23 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
23 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX19996A toc151
NOISE FIGURE vs. RF FREQUENCY
MAX19996A toc152
NOISE FIGURE vs. RF FREQUENCY
13
13 TC = +85C 12 NOISE FIGURE (dB)
13 PLO = -3dBm
12 NOISE FIGURE (dB)
12 NOISE FIGURE (dB)
11
11
11
10
10
10
9 TC = -30C 8 3000 3175 3350
TC = +25C
9
PLO = 0dBm, +3dBm
9
VCC = 4.75V, 5.0V, 5.25V
8 3525 3700 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) RF FREQUENCY (MHz)
8 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
26
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
2LO-2RF RESPONSE vs. RF FREQUENCY
MAX19996A toc154
MAX19996A
2LO-2RF RESPONSE vs. RF FREQUENCY
MAX19996A toc155
2LO-2RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm 2LO-2RF RESPONSE (dBc)
MAX19996A toc156 MAX19996A toc162 MAX19996A toc159
80 PRF = -5dBm TC = +85C 2LO-2RF RESPONSE (dBc) 70
80 PRF = -5dBm 2LO-2RF RESPONSE (dBc) PLO = +3dBm 70 PLO = 0dBm
80
70
60 TC = +25C TC = -30C 50 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
60
60
PLO = -3dBm 50 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 50 3000
VCC = 4.75V, 5.0V, 5.25V 3175 3350 3525 3700
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
MAX19996A toc157
3LO-3RF RESPONSE vs. RF FREQUENCY
PLO = -3dBm 3LO-3RF RESPONSE (dBc) 85 PRF = -5dBm
MAX19996A toc158
3LO-3RF RESPONSE vs. RF FREQUENCY
90 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 85
90 PRF = -5dBm 3LO-3RF RESPONSE (dBc) 85
90
80 TC = -30C 75 TC = +25C 70 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) TC = +85C
80 PLO = +3dBm 75 PLO = 0dBm 70 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
80 VCC = 5.25V 75 VCC = 4.75V VCC = 5.0V
70 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
MAX19996A toc160
INPUT P1dB vs. RF FREQUENCY
MAX19996A toc161
INPUT P1dB vs. RF FREQUENCY
14 VCC = 5.25V
14 TC = +85C 13 INPUT P1dB (dBm)
14
13 INPUT P1dB (dBm)
13 INPUT P1dB (dBm)
12
12
12
11 TC = +25C 10 TC = -30C
11 PLO = -3dBm, 0dBm, +3dBm
11 VCC = 5.0V 10 VCC = 4.75V
10
9 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
9 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
9 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
______________________________________________________________________________________
27
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc163
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc164
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc165
-10
-10
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
-20
TC = -30C
-20
PLO = -3dBm
PLO = 0dBm
VCC = 4.75V, 5.0V, 5.25V -20
-30 TC = +25C TC = +85C -40 3300 3475 3650 3825 4000 LO FREQUENCY (MHz)
-30
-30
PLO = +3dBm -40 3300 3475 3650 3825 4000 LO FREQUENCY (MHz) -40 3300 3475 3650 3825 4000 LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc166
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc167
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc168
45
45
45
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
TC = -30C, +25C, +85C 35
PLO = -3dBm, 0dBm, +3dBm 35
VCC = 4.75V, 5.0V, 5.25V 35
25
25
25
15 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
15 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
15 3000 3175 3350 3525 3700 RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc169
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc170
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc171
-15 LO LEAKAGE AT RF PORT (dBm)
-15 LO LEAKAGE AT RF PORT (dBm)
-15 LO LEAKAGE AT RF PORT (dBm)
-25
TC = -30C, +25C, +85C
-25
PLO = -3dBm, 0dBm, +3dBm
-25
VCC = 4.75V, 5.0V, 5.25V
-35
-35
-35
-45 3000 3250 3500 3750 4000 LO FREQUENCY (MHz)
-45 3000 3250 3500 3750 4000 LO FREQUENCY (MHz)
-45 3000 3250 3500 3750 4000 LO FREQUENCY (MHz)
28
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25C, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc172
MAX19996A
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc173
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19996A toc174
0 2LO LEAKAGE AT RF PORT (dBm)
0 2LO LEAKAGE AT RF PORT (dBm)
0 2LO LEAKAGE AT RF PORT (dBm) VCC = 4.75V, 5.0V, 5.25V -10
-10
TC = -30C, +25C, +85C
-10
PLO = -3dBm, 0dBm, +3dBm
-20
-20
-20
-30
-30
-30
-40 3000 3250 3500 3750 4000 LO FREQUENCY (MHz)
-40 3000 3250 3500 3750 4000 LO FREQUENCY (MHz)
-40 3000 3250 3500 3750 4000 LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX19996A toc175
IF PORT RETURN LOSS vs. IF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V fLO = 3800MHz IF PORT RETURN LOSS (dB) 10 L1, L2 = 270nH
MAX19996A toc176
LO PORT RETURN LOSS vs. LO FREQUENCY
MAX19996A toc177
0 5 RF PORT RETURN LOSS (dB) 10 15 20 25 30 2700 2900 3100 3300 3500 PLO = -3dBm, 0dBm, +3dBm
0
0 PLO = +3dBm 10
20 30
LO PORT RETURN LOSS (dB)
20 PLO = 0dBm 30 PLO = -3dBm
L1, L2 = 390nH
40 L1, L2 = 470nH 50 3700 50 140 230 320 410 500 L1, L2 = 120nH
40 1800 2350 2900 3450 4000 IF FREQUENCY (MHz) LO FREQUENCY (MHz)
RF FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
MAX19996A toc178
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19996A toc179
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19996A toc180
250 VCC = 5.25V 240 SUPPLY CURRENT (mA) VCC = 5.0V
-20
50
LO LEAKAGE AT IF PORT (dBm)
-30
RF-TO-IF ISOLATION (dB)
L3 = 0 40
230
-40
L3 = 4.7nH
220 VCC = 4.75V
30
210
-50 L3 = 0
L3 = 4.7nH 20 3825 4000 3000 3175 3350 3525 3700
200 -35 -5 25 TEMPERATURE (C) 55 85
-60 3300 3475 3650 LO FREQUENCY (MHz)
RF FREQUENCY (MHz)
______________________________________________________________________________________
29
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Pin Description
PIN 1, 6, 8, 14 2 3, 4, 5, 10, 12, 13, 17 7 9, 15 11 16 18, 19 20 NAME VCC RF GND LOBIAS N.C. LO LEXT IF-, IF+ IFBIAS FUNCTION Power Supply. Bypass to GND with 0.01F capacitors as close as possible to the pin. Single-Ended 50 RF Input. Internally matched and DC shorted to GND through a balun. Requires an input DC-blocking capacitor. Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together. LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604 1% (230mA bias condition) from LOBIAS to ground. Not internally connected. Pins can be grounded. Local Oscillator Input. This input is internally matched to 50. Requires an input DC-blocking capacitor. External Inductor Connection. Connect an inductor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation (see the Typical Operating Characteristics for typical performance vs. inductor value). Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit). IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698 1% (230mA bias condition) from IFBIAS to GND. Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance.
--
EP
Detailed Description
When used as a high-side LO injection mixer in the 2300MHz to 2900MHz RF band, the MAX19996A provides 8.7dB of conversion gain and +24.5dBm of IIP3 with a typical noise figure of 9.8dB. The integrated baluns and matching circuitry allow for 50 singleended interfaces to the RF and the LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX19996A's input to a -3dBm to +3dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced 2LO-2RF performance. Specifications are guaranteed over broad frequency ranges to allow for use in WCS, LTE, WiMAX, and MMDS base stations. The MAX19996A is specified to operate over an RF input range of 2000MHz to 3900MHz, an LO range of 2100MHz to 4000MHz, and an IF range of 50MHz to 500MHz. The external IF components set the lower frequency range (see the Typical Operating Characteristics for details). Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information).
RF Input and Balun
The MAX19996A RF input provides a 50 match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 14dB over the RF frequency range of 2300MHz to 2900MHz. A return loss of 15dB over the 3000MHz to 3900MHz range can be achieved by changing the DC-blocking capacitor to 1.5pF.
LO Inputs, Buffer, and Balun
With a broadband LO drive circuit spanning 2100MHz to 4000MHz, the MAX19996A can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. The LO input is internally matched to 50, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.
30
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer
High-Linearity Mixer
The core of the MAX19996A is a double-balanced, high-performance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, IIP3, 2LO-2RF rejection, and noise-figure performance are typically +24.5dBm, 67dBc, and 9.8dB, respectively. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If 1% resistors are not readily available, substitute with 5% resistors. Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of 3.3V. Doing so reduces the overall power consumption by up to 57%. See the 3.3V Supply AC Electrical Characteristics--fRF = 2300MHz to 2900MHz, High-Side LO Injection table and the relevant 3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance tradeoffs.
MAX19996A
Differential IF Output Amplifier
The MAX19996A has an IF frequency range of 50MHz to 500MHz, where the low-end frequency depends on the frequency response of the external IF components. The MAX19996A mixer is tuned for a 300MHz IF using 390nH external pullup bias inductors. Lower IF frequencies would require higher inductor values to maintain a good IF match. The differential, open-collector IF output ports require these inductors to be connected to VCC. Note that these differential ports are ideal for providing enhanced 2LO-2RF and 2RF-2LO performance. Singleended IF applications require a 4:1 (impedance ratio) balun to transform the 200 differential IF impedance to a 50 single-ended system. Use the TC4-1W-17 4:1 transformer for IF frequencies above 200MHz and the TC4-1W-7A 4:1 transformer for frequencies below 200MHz. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer.
LEXT Inductor
Short LEXT to ground using a 0 resistor. For applications requiring improved RF-to-IF and LO-to-IF isolation, L3 can be changed to optimize performance (see the Typical Operating Characteristics). However, the load impedance presented to the mixer must be so that any capacitances from IF- and IF+ to ground do not exceed several picofarads to ensure stable operating conditions. Since approximately 90mA flows through LEXT, it is important to use a low-DCR wire-wound inductor.
Layout Considerations
A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be so that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19996A evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.
Applications Information
Input and Output Matching
The RF input provides a 50 match when combined with a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 2000MHz to 3000MHz. A 1.5pF capacitor value should be used to match the RF port for the 3000MHz to 3900MHz band. The LO input is internally matched to 50; use a 2pF DC-blocking capacitor to cover operations spanning the 2100MHz to 4000MHz LO range. The IF output impedance is 200 (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50 singleended output (see the Typical Application Circuit).
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and Table 1.
Reduced-Power Mode
The MAX19996A has two pins (LOBIAS, IFBIAS) that allow external resistors to set the internal bias currents. Nominal values for these resistors are given in Table 1.
______________________________________________________________________________________
31
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Table 1. Component Values
DESIGNATION QTY DESCRIPTION 8.2pF microwave capacitor (0402). Use for RF frequencies ranging from 2000MHz to 3000MHz. C1 1 1.5pF microwave capacitor (0402). Use for RF frequencies ranging from 3000MHz to 3900MHz. C2, C6, C8, C11 C3, C9 C10 C13, C14 C15 L1, L2 L3 R1 R2 R3 T1 U1 4 0 1 2 1 2 1 1 1 1 1 1 0.01F microwave capacitors (0402) Not installed, capacitors 2pF microwave capacitor (0402) 1000pF microwave capacitors (0402) 82pF microwave capacitor (0402) 390nH wire-wound high-Q inductors* (0805) (see the Typical Operating Characteristics) 4.7nH wire-wound high-Q inductor (0603) 698 1% resistor (0402). Use for VCC = 5.0V applications. 1.1k 1% resistor (0402). Use for VCC = 3.3V applications. 604 1% resistor (0402). Use for VCC = 5.0V applications. 8451% resistor (0402). Use for VCC = 3.3V applications. 0 resistor (1206) 4:1 IF balun TC4-1W-17* MAX19996A IC (20 TQFN-EP) Murata Electronics North America, Inc. -- Murata Electronics North America, Inc. Murata Electronics North America, Inc. Murata Electronics North America, Inc. Coilcraft, Inc. Coilcraft, Inc. Digi-Key Corp. Digi-Key Corp. Digi-Key Corp. Mini-Circuits Maxim Integrated Products, Inc. Murata Electronics North America, Inc. COMPONENT SUPPLIER
*Use 470nH inductors and TC4-1W-7A 4:1 balun for IF frequencies below 200MHz.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX19996A's 20-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX19996A is mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.
32
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Typical Application Circuit
C13
L1
C15 3 6 IF OUTPUT T1
2 R3 C14 R1 L2 1 4:1 4
L3 IFBIAS IF+ IF+5.0V LEXT 16 N.C. GND 17
20 C3 C2 VCC C1 RF INPUT
19
18
1
15
RF
2
MAX19996A
14
VCC C11
+5.0V
GND
3
13
GND
GND
4 EP
12
GND C10
GND
5
11
LO
LO INPUT
6 VCC
7 LOBIAS
8 VCC
9 N.C.
10 GND NOTE: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION. PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION.
+5.0V C6
R2
C8 +5.0V C9
______________________________________________________________________________________
33
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Pin Configuration/ Functional Diagram
IFBIAS
Chip Information
PROCESS: SiGe BiCMOS
TOP VIEW
LEXT
GND
IF+
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.
15 N.C.
20 VCC
19
18
IF-
17
16
1
PACKAGE TYPE 20 Thin QFN-EP
PACKAGE CODE T2055+3
DOCUMENT NO. 21-0140
RF
2
MAX19996A
14
VCC
GND
3
13
GND
GND
4 EP
12
GND
GND
5
11
LO
6 VCC
7 LOBIAS
8 VCC
9 N.C.
10 GND
34
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer MAX19996A
Revision History
REVISION NUMBER 0 1 REVISION DATE 1/09 5/09 Initial release Updated Electrical Characteristics table limits DESCRIPTION PAGES CHANGED -- 6
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 35
(c) 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.


▲Up To Search▲   

 
Price & Availability of MAX19996A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X